25 MDA/MDMA METHODOLOGY	Page 1 of 2
Division of Forensic Science	Amendment Designator:
CONTROLLED SUBSTANCES PROCEDURES MANUAL	Effective Date: 9-December-2003

25 MDA/MDMA METHODOLOGY

25.1 Scheduling:

- Schedule I 3,4-methylenedioxyamphetamine (MDA)
- Schedule I 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy)
- Schedule I 3,4-methylenedioxy-N-ethylamphetamine (MDEA, Eve)
- Schedule I 4-bromo-2,5-dimethoxyphenethylamine (2C-B, Nexus)

25.2 Color Tests Results:

- 25.2.1 The sulfuric acid series of color tests generally give intense colors that undergo vivid transitions with MDA and MDMA. These may all appear black with very concentrated samples.
- 25.2.2 Marquis
 - MDA/MDMA dark violet → black
 - Nexus light green \rightarrow green
- 25.2.3 Meckes
 - MDA/MDMA green → dark blue/violet → black
 - Nexus yellow
- 25.2.4 Froehdes
 - MDA/MDMA brown → dark blue/violet → black
 - Nexus yellow
- 25.2.5 TBPEE
 - MDA purple
 - MDMA blue
 - MDEA blue
 - Nexus purple

25.3 TLC:

- 25.3.1 Baths: TLC1, TLC2, TLC3, TLC4 and TLC5 are recommended.
- 25.3.2 Detection sprays
 - Iodoplatinate, results may be enhanced by overspraying with Ceric Sulfate.
 - Dragendorf
 - Fluram visualizes MDA, Nexus and other primary amines.
- 25.4 UV: MDA/MDMA maximum at 234 nm and 285 nm in acid with associated minima.

25.5 GC:

25.5.1 Extraction of the sample may be necessary to get good chromatography.

25 MDA/MDMA METHODOLOGY	Page 2 of 2
Division of Forensic Science	Amendment Designator:
CONTROLLED SUBSTANCES PROCEDURES MANUAL	Effective Date: 9-December-2003

25.5.2 Acetyl Derivative: The acetyl derivative of MDMA-type compounds is made by drawing up 1 μ L of sample followed by 1 μ L of acetic anhydride, separated by an air bubble. The acetyl derivative should have a longer retention time than the underivatized compound and may require a higher temperature than the underivatized compound.

25.6 FTIR:

- 25.6.1 Extraction from excipients may be necessary to obtain a good spectrum.
- 25.6.2 GC-FTIR is a useful tool to differentiate MDMA-type compounds.

25.7 MDMA Quantitation:

- 25.7.1 See GC section 10 for general quantitation procedure.
- 25.7.2 Reagents:
 - Methylene Chloride or Chloroform
 - Octadecane
 - MDMA HCl: (Alltech or USP)
- 25.7.3 Internal Standard Solution:
 - 25.7.3.1 Prepare a sufficient volume to dilute the standard solutions and all samples.
 - 25.7.3.2 Prepare a 1 mg/mL solution of octadecane in methylene chloride or chloroform in the appropriate volumetric flask.
- 25.7.4 MDMA Standard Solutions:
 - 25.7.4.1 Weigh ~ 20 mg of MDMA HCl and transfer to a 10 mL volumetric flask with internal standard solution. Dilute to mark with internal standard solution. This results in a solution of ~ 2.0 mg/mL MDMA in internal standard solution.
 - 25.7.4.2 Prepare a solution of another concentration within the linear range in the same manner to use as the check standard.
- 25.7.5 Sample Preparation:
 - 25.7.5.1 If the salt form of the sample is unknown, convert MDMA HCl to free base by multiplying the weight of MDMA HCl by 0.841 (193.25 F.B./229.71 HCl).
 - 25.7.5.2 Weigh 10-40 mg of sample and transfer to a 10 mL volumetric flask with internal standard solution. Dilute to mark with internal standard solution.
- 25.7.6 GC parameters:
 - Column: 15 m HP-1 or HP-5 capillary (0.25 mm i.d, 0.25 µm film thickness)
 - Oven temperature: 150 170°C
 - FID temperature: 270°C
- 25.7.7 Octadecane comes out after MDMA.